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INTRODUCTION 
A number of electrochemical devices, in particular lithium 

batteries, utilize polymers in constructing the electrolyte layer.   
Typically these materials comprise ion conducting polymers or polymer 
gels that are easily deformable but dimensionally sound membranes.  
These solid state materials can serve as both the electrolyte and the 
separator between electrodes but they possess limited mechanical 
properties.  Achieving improved mechanical properties is often 
hindered by the competing need for polymer mobility to aid ion 
transport in solvent-free systems, as well as the breakdown in 
mechanical properties in solvent swollen systems.  Previous methods 
to maintain desirable structural properties in polymer electrolytes have 
included crosslinking1, ceramic particle and fiber fillers2,3, and block 
arrangement of copolymers4, among other efforts.  However, research 
into these methods typically falls short of reaching superior mechanical 
properties while maintaining useful ion conductivity. 

We are developing polymer electrolytes with a principal focus on 
mechanical properties, in particular high stiffness values (>100 MPa) 
as well as convenient processing.  Our projected applications include 
multifunctional structural batteries that could potentially replace inert 
structural components, such as unmanned aerial vehicle (UAV) wings.5  
Within this scope, the primary need is for a mechanically robust 
electrolyte that can function as a structural material while providing 
sufficient ion transport.  The present study includes solvent-free ion 
conducting vinyl ester resins. 
 

EXPERIMENTAL 
Materials.  Lithium triflate (Aldrich) was dried at 180 °C under 

vacuum for 8 h.  Sartomer Company supplied acrylate and 
methacrylate functionalized monomer samples.  The monomers were 
stored between uses in a refrigerator in brown glass bottles sealed with 
parafilm.  Chemicals were used as received and handled under dry 
nitrogen. 

Polymer Synthesis.  Lithium triflate was added to the appropriate 
PEG acrylate or methacrylate functionalized monomer to achieve the 
desired salt content.  The components were sealed in a glass vial, 
mixed on a roll mixer and/or vortexer, and gently heated (< 80 °C) as 
necessary to fully dissolve the salt.  Light exposure was minimized 
during this process.  Thermally induced polymerization was not 
apparent in the absence of initiator.  The solutions were degassed in a 
vacuum oven at 60 °C until bubbling had ceased.  Copolymer 
formulations were mixed in 4 mL glass vials at the desired ratio of 
monomers.  Organic peroxide with the trade name Trigonox was added 
as the initiator in quantity 1.5 wt% (vs. resin), followed by 1 wt% (vs. 
resin) dimethylaniline.  The samples were mixed thoroughly with a 
spatula and poured into silicone rubber molds.  The molds were heated 
under continuous nitrogen purge to 80 °C for 12 h, followed by 110 °C 
for 1 h, after which the oven was allowed to cool to room temperature. 

The cured pellets, measuring 12.3 mm in diameter and 3 mm in 
thickness, were measured precisely using a digital caliper.  Both sides 
of the pellets were coated with a thin application of quick drying silver 
paint followed by heat treatment (90-110°C) under vacuum for at least 
12 h to remove residual solvent.  The superficial films were measured 
to be about 0.03 mm thick.  Each pellet was used for both 
electrochemical and mechanical testing. 
 

Characterization.  Electrochemical impedance spectroscopy was 
conducted using a Solartron 1260 Impedance / Gain-Phase Analyzer 
and Solartron 1287 Electrochemical Interface across a frequency 
range of 106 Hz to 10 Hz at room temperature (18 - 20 °C).  Each 

sample was assembled under a dry air atmosphere in a test cell with 
stainless steel blocking electrodes.  For mechanical characterization, 
compression testing was conducted at room temperature using a MTS 
load frame with a 5 kN load cell.  Each sample was exposed to 
standard atmosphere for two minutes during compression.  The tests 
were run in a displacement control mode at a cross-head speed of 1 
mm/min.  Data was normalized for error resulting from system 
compliance.  

 
RESULTS AND DISCUSSION 

 
An outline of the polymer materials used in this study is included 

in Table 1.  Polyacrylates have been previously studied for electrolyte 
use owing to their dimensional stability, however they are typically 
plasticized.6  A diverse sampling of PEG vinyl ester monomers were 
initially mixed with lithium triflate in a concentration range of 10 – 50 
EO:Li (etheric oxygens per lithium) to ascertain the optimal salt 
concentration for each sample as determined by solvent-free 
conductivity values.  Some of the conductivity data is presented in 
Figure 1 and indicates peak conductivity at 30 – 40 EO:Li, which 
corresponds to about 9-12 wt% salt with respect to PEG.  Note that the 
concentration of PEG in these samples ranges between 60 wt% - 70 
wt%, but these variations present no substantial difference in the 
absolute concentration of the salt  
 

Table 1.  Structural Electrolyte Material Components 
 

Matrix Element Description 

Linear Polyacrylate with PEG sidechains 

PEG Diacrylate 

PEG Triacrylate Networked 

PEG Tetraacrylate 
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Figure 1.  Conductivity vs. salt content for solvent-free vinyl ester 
polymer electrolyte.  “Mono-” resins form comb polymers while “di-“ 
resins form networked polymers.  “a” and “m” in the legends refer to 
“acrylate” and “methacrylate”, respectively. 
 

A more comprehensive set of PEG vinyl ester monomers was 
then complexed with lithium triflate at 30 EO:Li and polymerized as 
homopolymers.  The homopolymers systematically vary in length of the 
PEG oligomer, number of vinyl ester functional groups per monomer, 
and the nature of additional functional groups.  Figures 2 and 3 relate 
the modulus and conductivity data for the homopolymer electrolytes as 
a function of concentration vinyl groups and PEG, respectively.  In 
these materials, the vinyl groups are the means by which polymer 
growth and crosslink formation occur and PEG oligomers control ion 
diffusion.  In Figure 2, not all vinyl groups may be considered to have 
reacted, especially for networked species that have reached the gel 
point.7  However, a trend is evident for each type of monomer, and 
PEG mono-, di-, tri-, and tetraacrylates are all fit by a power law as 
shown in the figure.  This suggests that it may be possible to predict 
the properties of similar acrylic PEG electrolytes not tested here.  
Trends are also apparent in Figure 3 for conductivity vs. PEG 
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concentration, although the asymptotic behavior at low concentrations 
of PEG prohibits a predictive regression analysis.  However, this 
asymptotic behavior may be an artifact of our inability to accurately 
measure very low conductivity values.  Experiments are underway to 
resolve conductivity data below 10-7 S/cm. 
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Figure 2.  Modulus trends for solvent-free vinyl ester polymer 
electrolytes as perceived through vinyl concentration.  A best fit power 
law regression is included for PEG acrylates, y = 721000x4.13 (R=0.94).  
The vinyl concentration includes all available vinyl groups based on 
molecular structure.  “a” and “m” in the legends refer to “acrylate” and 
“methacrylate”, respectively. 

 
 

Ion Conductivity vs PEG Content
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Figure 3.  Conductivity trends with decreasing PEG oligomer lengths 
for solvent-free vinyl ester polymer electrolytes as perceived through 
increasing weight percent PEG.  “a” and “m” in the legends refer to 
“acrylate” and “methacrylate”, respectively.
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Figure 4.  Electrochemical and mechanical behavior for homopolymers 
(solid markers) and select copolymers (open markers) of PEG vinyl 
ester electrolytes.

 
Monomers of four of the comb homopolymers that showed 

electrochemically promising results were subsequently mixed in 
approximately 25 wt%, 50 wt%, and 75 wt% with monomers of the 
crosslinking resins to form random copolymer electrolytes.  Figure 4 
illustrates the difference in combined electrochemical / mechanical 
behavior between the homopolymers and some of the copolymers.  

Samples that appear towards the upper right corner of the graph are 
considered the most useful since they perform well in both categories.  
The copolymers typically outperformed the homopolymer trend, and 
were noticeably better than the average of the two homopolymers 
comprising them.  It is possible that performance may be further 
enhanced by controlling monomer reactivity into block architecture.  

While samples described here do not have the necessary 
performance characteristics for highly efficient composite application, 
the trends elucidated through these studies do indicate directions for 
continuing material development.  In addition, parallel work has been 
performed in our laboratory in which functioning structural batteries 
have been fabricated using the materials described here. 
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